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Abstract
Purpose For patients with myocardial infarction (MI), delayed enhancement (DE) cardiovascular magnetic resonance imag-
ing (MRI) is a sensitive and well-validated technique for the detection and visualization of MI. The myocardium viability
assessment with DE MRI is important in diagnosis and treatment management, where myocardium segmentation is a prereq-
uisite. However, few academic works have focused on automated myocardium segmentation from DE images. In this study,
we aim to develop an automatic myocardium segmentation algorithm that targets DE images.
Methods We propose a segmentation framework based on both prior shape knowledge and image intensity. Instead of the
strong request of the pre-segmentation of cine MRI in the same session, we use the sparse representation method to model
the myocardium shape. Data from the Cardiac MR Left Ventricle Segmentation Challenge (2009) are used to build the shape
template repository. The method of guided random walks is used to integrate the shape model and intensity information. An
iterative approach is used to gradually improve the results.
Results The proposed method was tested on the DE MRI data from 30 MI patients. The proposed method achieved Dice
similarity coefficients (DSC) of 74.60±7.79% with 201 shape templates and 73.56±6.32% with 56 shape templates, which
were close to the inter-observer difference (73.94±5.12%). To test the generalization of the proposedmethod to routine clinical
images, the DE images of 10 successive new patients were collected, which were unseen during the method development and
parameter tuning, and a DSC of 76.02±7.43% was achieved.
Conclusion The authors propose a novel approach for the segmentation of myocardium from DE MRI by using the sparse
representation-based shape model and guided random walks. The sparse representation method effectively models the prior
shape with a small number of shape templates, and the proposed method has the potential to achieve clinically relevant results.

Keywords Delayed enhancement MRI · Myocardium segmentation · Guided random walks · Prior shape modeling · Sparse
representation

Introduction

Technical advances in hardware and software developments
have led to the increasing clinical use of cardiovascular mag-
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netic resonance imaging (MRI).Kimet al. have demonstrated
that delayed enhancement (DE)MRI is an effective andwell-
validated imaging technique for the detection and assessment
of myocardial infarction (MI) [1]. DE images are acquired
at a 10–15 min delay after an intravenous administration
of gadolinium contrast, and a suppressed signal is obtained
in normal myocardium that is hyper-enhanced in infarcted
regions [1, 2].

The myocardium viability assessment with DE MRI is
important in the diagnosis and treatment of MI. With the
segmentation of both the myocardium and infarct region
in the DE images, some useful coefficients can be calcu-
lated, for example, the transmural extent, which is important
in disease management and prognosis. Most of the exist-
ing academic works that relate to DE MRI focus on the
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Fig. 1 Examples of the DE images: the apical, middle and basal slices of 6 subjects are shown

automatic localization and quantification of infarct regions,
while the delineation of myocardium is assumed to have
already been achieved [3–9]. Since the manual segmenta-
tion of myocardium is labor-consuming and suffers from
inter-observer variations [10], automatic myocardium seg-
mentation is desired. However, obtaining this ambitious goal
can be arduous, primarily due to the characteristics of DE
images. First, the hyper-enhanced infarcted region and sup-
pressed healthy region result in the heterogeneous intensity
of the myocardium. In other MRI sequences, such as the
widely used cineMRI, whereMI cannot be visualized, a uni-
form distribution of myocardium intensity is often assumed
[11, 12]. Thus, many automatic segmentation methods that
are designed and tested on other types of images are chal-
lenged. Second, the intensity range of myocardium overlaps
with the intensity range of the surrounding tissues [10, 13],
and often, no distinct boundary can be observed, as illustrated
in Fig. 1. Third, the enhancement patterns are complex. The
location, size and shape of the infarcted regions vary sig-
nificantly from patient to patient. Microvascular obstruction
(MVO), which appears as hypo-enhanced areas (because of
the lack of contrast agent uptake) within the hyper-enhanced
infarcted region [2, 14], can also occur. The introduction
of geometric assumptions regarding infarcted regions may
actually limit the scope of the applications for the designed
algorithm.

Currently, limitedworkhas beenperformedonmyocardial
segmentation from DE MRI. Most existing approaches take
the myocardial segmentation from cine MRI that is acquired
in the same session as a priori knowledge, since cine MRI,
for which many segmentation methods have been proposed,
is widely used in MRI examinations. Myocardial segmenta-
tion in DEMRI can be achieved by the direct propagation of
segmentation from cine MRI. Different registration methods

were designed for this propagation, such as 2D rigid registra-
tion based on a shift window [15], affine transformation [16]
and rigid registration that incorporates multiscale total vari-
ation flow [17]. However, with the non-rigid deformation of
the heart and possible errors in the electrocardiography gat-
ing during image acquisition, rigid or affine registration may
be unable to capture all deformations. In previous academic
work [10, 18, 19], an additional process was performed after
registering the cine and DE images, where the propagated
prior segmentation was deformed toward the myocardium
contours in the targetDE images. Todetect the contours inDE
images, Ciofolo et al. proposed a 2D geometrical template,
where myocardium was modeled as a closed ribbon struc-
ture with an imaginary centerline and variable width [18].
Wei et al. proposed a 1D parametric model to detect paired
endocardial and epicardial edge points, where the intensity
patterns along the radial rays from the left ventricle (LV)
center to beyond the epicardium were modeled [19].

The segmentation results of cine MRI are strong prior
information, which can simplify segmentation [19]. How-
ever, respiratory motions and differences in the thoracic gas
volume between breath holdings can prevent DE and cine
MRI from covering the same scope of the heart [10]. In
addition, expert supervision can be required in the cine MRI
segmentation stage and in the cine and DE MRI registra-
tion stage [19], which limits the minimization of human
interaction. Some attempts have also been made to segment
DE images without the guidance of cine MRI [13, 20, 21].
However, only the epicardium has been segmented [13], and
relatively weak prior knowledge of the myocardium thick-
ness constraint has been previously adopted [21], which
makes it difficult to guarantee a realistic shape in the results.

In this paper, we propose a segmentation approach toward
the DE images to simplify the segmentation procedure and
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minimize human supervision. Our work is distinct from
the existing methods in three aspects. First, we explore the
possibility of eliminating the strong dependency of the pre-
segmented cineMRI, andweuse a shapemodel to provide the
prior information. Second, tomaintain the shape characters of
each shape template and achieve sufficient flexibility, we use
the sparse representation technique to build the shape model.
Third, for the information extraction from the DE images,
we adopt a method based on random walks. The prior shape
model is also integrated to form the guided random walks.

The rest of this paper is organized as follows. The pro-
posed segmentation framework are described in “Materials
and method” section, the validation method and experiment
results are presented in “Performance analysis” section, and
the discussion and conclusion are in “Discussion” and “Con-
clusion” sections, respectively.

Materials andmethod

Data Preparation

We acquired navigated 3D acquisition DE MRI from 30
patients with myocardium infarction as the testing data. The
resolution of the DE MRI was 0.7292×0.7292×5 mm.
Each image contained 10–18 short axis slices with 490×
490 pixels in each slice. An observer with expertise in car-
diac anatomymanually delineated themyocardial boundaries
on all the data to generate the “gold standard” for evalua-
tion. Furthermore, for an inter-observer study, we randomly
selected 10 subjects from the data for another manual seg-
mentation. This segmentation was performed independently
by another expert, who did not have access to the first man-
ual segmentation. ITK-SNAP (www.itksnap.org) was used
to perform the manual segmentations [22].

Though cineMRIwas not needed in the proposedmethod,
we also collected cine images of the target patients to gen-
erate the patient-specific prior shape, for evaluation of the
adopted shape model. The resolution of the cine MRI was
1.25×1.25×11 mm. The automatic segmentation of cine
MRI is still an open question; therefore, we used manual
segmentation, which provides the best patient-specific prior
information. The manual segmentation of cine MRI was
performed by the same expert who generated the DE gold
standard.

Since the number of our acquired DE data sets is limited,
the data from the Cardiac MR Left Ventricle Segmentation
Challenge (2009) [23] were downloaded as training data,
to obtain the prior shape of the myocardium. Two specific
categories of the data were selected, including heart failure
with infarct and normal heart. Manual segmentation from
the end-diastolic phase of the selected subjects was used for

modeling the prior shape, which contains 21 subjects and
201 slices in total.

Automatic Segmentation Framework

An overview of proposed segmentation method is shown in
Fig. 2. The method is described in five parts, namely the
atlas-based initialization, the construction of target-specific
dictionary, the sparse representation-based shape model,
the guided random walks and the iterative framework. The
emphasis is made on the target-specific dictionary, the sparse
shape model and the guided random walks.

Initialization of the Segmentation Algorithm

First, the atlas-basedmethod is used to generate an initial seg-
mentation of the myocardium. The atlas is pre-established
from the high-resolution MRI scan of a healthy volunteer
and is resampled to the resolution of 1×1×1 mm. The reg-
istration scheme is based on the previous work of Zhuang
et al [24]., which consists of three steps, namely global
affine registration for the localization of the entire heart, the
locally affine registrationmethod for the initialization of sub-
structures and free-form deformation registration based on
spatially encoded mutual information [25]. The registration
tools can be downloaded from ZXHPROJ (http://www.sdsp
eople.fudan.edu.cn/zhuangxiahai/0/zxhproj/). The resultant
transformation is used to transform the atlas into the image
space of the target DE MR image.

Construction of a Target-Specific Dictionary

With the 201MRI slices from the Challenge data set, a shape
template repository can be built. Because of the large slice
thickness (i.e., the gap between slices) in DEMRI, the shape
information between slices is discontinuous. We therefore
use 2D slices as the shape templates. Instead of using the
explicit parametric shape representation [26, 27], we repre-
sent the manual segmentation of each slice as a mask, where
the position of myocardium is marked with 1, and the rest is
marked with 0, similar to the method in [28].

Given a target slice, all the shape templates are aligned
to the LV center of the target slice, which can be estimated
using the initial segmentation. To keep the shape characters
and detail information of the original templates, we use rigid
registration for this alignment. One can formulate a shape
template using a vector si ∈ R

k, i � 1, . . . , N , where k is
the number of pixels in each aligned shape template, and N
is the total number of shape templates.

For each target slice, only a small set of the templates
resembles the size and shape of the target myocardium.
Therefore, using all the templates may not be necessary
for an efficient and effective modeling. We therefore pro-

123

http://www.itksnap.org
http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/zxhproj/


International Journal of Computer Assisted Radiology and Surgery

Fig. 2 Flowchart of the proposed method. Three important components are the sparse shape model, guided random walks and the construction of
a target-specific dictionary (TSD)

pose to build a target-specific shape dictionary for each
slice. Intuitively, the templates that have similar position and
myocardial shape to the target should be more important
in myocardial shape representation. For example, the tem-
plates that are built with apical slices may be less useful in
the segmentation of a basal slice. In this work, an empirical
method is used. We use the Dice similarity coefficient (DSC)
between the templates and the initial segmentation to define
the selection criterion such that a template is selected when
its DSC exceeds a threshold, for example, 30% in our exper-
iment. The selected templates are then used to construct the
target-specific dictionary, Dr � [sr1, sr2, . . . , srn], where
subscript r represents the r th slice in the target data, and n
is the total number of shape templates that are selected for
the rth slice. The value of n depends on the number of tem-
plates that meet the above DSC criterion, and this value is
approximately 60–120 in this study.

Prior Shape Modeling

Because of the indistinct boundaries and complex variability
of the heart’s shape, prior knowledge is critical to obtain an
automatic segmentation resultwith a realistic heart shape.We
model the myocardium shape using a sparse linear combina-
tion of the components of the target-specific dictionary Dr .
The combination coefficient vector αr ∈ R

n is determined
as follows:

αr � argmin
w

y − Drw
2
2 + λw1, (1)

where y ∈ R
k is the vector that represents the current seg-

mentation of myocardium, and w is the sparse representation
coefficient vector. The L1 norm term imposes sparsity, and
parameter λ controls the level of sparsity. Intuitively, when
parameter λ is larger, fewer nonzero elements will be in
vector w, that is less templates in Dr will be effective in
representing the myocardium. The Lasso problem of Eq. (1)
is solved with SPAMS (http://spams-devel.gforge.inria.fr/),
where a fast implementation of the least angle regression
algorithm is used [29].

Then, the prior shape can be represented as

yshaper � Drαr . (2)

Guided RandomWalks

To fit the shape model to the target images and achieve the
segmentation results, the intensity information in the DE
images must also be analyzed. For this purpose, we adopt
the random walks method and integrate the prior shape to
form the guided random walks.

The method of random walks is a graph-based segmen-
tation algorithm where an image is treated as a graph G �
(V , E) with vertex set V and edge set E . Each voxel in the
image is represented as a vertex v ∈ V , and each neighbor-
ing vertex pair vi , v j (e.g., 6- or 26-connected in 3D images)
is spanned with an edge ei j ∈ E ⊆ V × V . A real-valued
weight is assigned to each edge, representing the likelihood
that a random walker will cross this edge. The algorithm cal-
culates the probability xi that a random walker, starting at an
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unseeded voxel vi , first reaches the user labeled seeds of a
specific class (e.g.,myocardium). This problemcan be solved
by calculating the solution of a system of sparse linear equa-
tions. The size of the linear equations depends on the number
of voxels in the target image. The random walks algorithm
has the pragmatic properties of weak boundary detection,
noise robustness and the assignment of ambiguous regions
[30].

In this work, instead of using manually labeled seeds as
the prior information [30], we use the prior shape to guide
the random walks. Given the target image, a 2D prior shape
is constructed for each slice, that is, yshaper for the r th slice.
We denote the prior shape for all the slices with yshape. The
energy function is designed as

E(x) � 1

2

∑

ei j∈E
ωi j

(
xi − x j

)2 + γ · 1
2

∑

i∈V

(
xi − yshapei

)2
,

(3)

where xi represents the probability for myocardium in voxel
i , and γ is a weighting parameter. Here, we compute the
edge weights based on the intensity difference between the
vertices as follows:

ωi j � exp
(
−β

(
Ii − I j

)2)
, (4)

where Ii is the image intensity of voxel i , and β is an
adjustable parameter that controls the sensitivity to the inten-
sity contrast.

The first term in Eq. (3) is the conventional random walks
term. When the neighboring voxels have similar intensities
Ii and I j , the value of the edge weight ωi j is close to 1. Thus,
minimizing the first term leads to similar probabilities xi and
x j . In contrast, when the intensities are different, the weight,
ωi j , tends to zero. Then, the probabilities xi and x j do not
affect one another. The second term is the proposed prior-
guided term, which drives the value of xi toward the value of
prior shape yshapei .

Equation (3) can be rewritten in the matrix form as

E(x) � xT Lx +
γ

2

(
xT x − 2xT yshape + yshapeT yshape

)
,

(5)

where x is the vector of the probability of all the voxels, and
L is the Laplacian matrix that is defined as

Li j �
⎧
⎨

⎩

di , i � j
−ωi j , ei j ∈ E
0, otherwise

, (6)

di �
∑

ei j∈E
ωi j . (7)

One can obtain the solution by solving a system of linear
equations as follows:

(2L + γ I)x � γ yshape. (8)

Since L is positive semi-definite [30] and the value of
parameter γ is positive, the system is positive definite. There-
fore, a unique solution is guaranteed. The size of the linear
equations is the number of voxels in the region of interest. In
our study, this number is 22,500.

Iterative Segmentation

With the initial segmentation, an iterative scheme is con-
structed. For each slice, the sparse representation coefficient
of the associated shape dictionary is updated to fit the cur-
rent segmentation by solving Eq. (1). In this process, a strong
shape regularization is imposed, and the infrequent shapes
may take leading roles in the prior shape modeling. Then,
the prior shape that is calculated with Eq. (2) is used to guide
the random walks, and the probability for myocardium is
computed using Eq. (8). A threshold T is experimentally
chosen to compute a binary segmentation from the resulting
probability. The current results are then added to the prior
shape representation for the next iteration. This procedure is
repeated until the number of the changed pixel labels is zero
or a maximum number of iterations are reached.

Performance analysis

The parameters used in this work were λ � 0.2, γ = 0.02, β
�100, T = 0.42, and the maximum number of iterations was
20. For qualitative evaluation, the segmentation results of the
basal, middle and apical slices from 3 subjects are demon-
strated in Fig. 3, along with the manual segmentation from
the two observers. Also, the results of the proposed method
were quantitatively evaluated by comparing with the manual
delineation by the first observer, which was performed on all
the data. And compared methods were designed to evaluate
the effectiveness of each part in the proposed method. More-
over, the effects of the size of shape repository and iteration
number were studied.

Evaluationmetric

We validated our method using 30 MRI data sets from
patients withmyocardium infarctions. To quantitatively eval-
uate the proposedmethod, we usedDSC and shape similarity
(SS) [31] to compare the segmentation results with the gold
standard.
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Fig. 3 The automatic and manual segmentation results of three subjects
are illustrated: the first column is the results of the proposed method,
referred to as “Result”; the second column is the manually delineated

gold standard (ManSeg1); and the third column is the second manual
segmentation for the inter-observer study, referred to as ManSeg2

The DSC measures the overlap between the segmen-
tation results y and the gold standard g: DSC( y, g) �
2| y ∩ g|/(|y| + |g|).

The SS metric is a function of the angle between the nor-
mal vectors of the two boundaries and is weighted by the
boundary distance:

SS( y, g) � 1

|∂ g|
∑

n∈∂ g

∣∣∣∣∣

∣∣∇L y[n] · ∇L g[n]
∣∣

∣∣∇L y[n]
∣∣∣∣∇L g[n]

∣∣

∣∣∣∣∣ exp
(

− L2
y[n]

σ 2

)

(9)

where n ∈ ∂ g refers to the boundary points of the gold stan-
dard, and L y[n] and L g[n] are the signed distance functions
of the boundaries of the segmentation results and the gold
standard, respectively. The value of SS is bounded between
0 and 1, and when the value is greater, the two shapes are
more similar. A free parameter σ is included in the definition
of SS, and its value was set as 10 in our study.

ComparedMethods

Toevaluate effectiveness of eachpart in the proposedmethod,
we implemented two simplified versions by removing some
important components in the proposed method, that is, the
Atlas and AtlasGuided methods. In the proposed method,
the data from the Cardiac MR Left Ventricle Segmentation
Challenge (2009) were used to build the shape template
repository. These data were acquired from different patients
in different environments and were segmented by different
people than our testing data. To study the effect of building
prior shape using training data from different data center, we
designed the ManGuided method, where the manual seg-

mentation of corresponding cine images of the target DE
data was used to generate the patient-specific prior shape.

Atlas: In the atlas-based segmentation, the atlas is regis-
tered to the target image for segmentation propagation [32].
The registration scheme and the atlas are the same as the
initialization in the proposed method.

AtlasGuided: this method is a simplified version of
the proposed method where the sparse representation-based
shape model is removed, that is, the initialization is used to
guide the random walks. The effect of the shape model can
be evaluated by comparing it with the proposed method.

ManGuided: instead of using shape templates that are
built from different patients, this method uses the manual
segmentation of the cine MRI of the same subject. Because
the cine and DE MRI data have different slice thicknesses,
there is no simple correspondence between the cine and DE
MRI slices. Therefore, the cine segmentation from all slices
of the subject is used to build the patient-specific dictionary.
Then, sparse representation is used to guide the randomwalks
in the same way as the proposed method. The initialization
is also performed with the same registration scheme as the
proposed method.

All of these methods were evaluated with the same data
sets, and the parameters were adjusted to achieve the best
results for each method. The inter-observer study on 10 ran-
domly selected subjects was also performed to evaluate the
potential of the proposed method for clinical use.

For visual comparison of the four methods, the
myocardium segmentation results of 7 subjects are shown
in Fig. 4. The DSC and SS of the proposed and compared
methods are shown in Table 1. To better illustrate the results,
the box plots of the DSC and SS are shown in Fig. 5. The
paired t test demonstrated that significant differences exist
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Fig. 4 Visualization of the seven segmentation results of the four methods and the manual segmentation of the first observer, which is taken as gold
standard

Table 1 Segmentation accuracy evaluated with DSC (%) and similarity (%)

Proposed Atlas AtlasGuided ManGuided Inter-observer

DSC 74.60±7.79 65.22±8.24 71.91±7.51 74.51±8.44 73.94±5.12

SS 79.92±5.88 76.92±6.98 77.86±6.18 79.86±5.94 83.42±4.67

Note that the inter-observer difference is evaluated with 10 data sets

Fig. 5 Box plots of myocardial segmentation results: a DSC and b SS

between the myocardium DSC of the proposed method and
the Atlas, AtlasGuided methods (p <0.01). No significant
difference was detected between the proposed method and
the ManGuided method.

Method’s generalization to unseen data

To test the generalization of the proposed method to rou-
tine clinical images, we have collected the DE images of
10 successive new patients. These data were unseen during
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Table 2 Effect of selection of shape templates evaluated with DSC (%)

21 data sets 12 data sets 6 data sets

DSC 74.60±7.79 73.75±6.84 73.56±6.32

SS 79.92±5.88 79.23±5.91 78.60±5.59

Fig. 6 Effect of iteration number. The blue line indicates the DSC of
75%

the method development and parameter tuning. The results
for the 10 new images are: 76.02±7.43% for DSC and
82.15±4.93% for SS.

Effect of Size of Shape Template Repository

We tested the effects using the sets of shape templates with
different sizes, including 21 data sets (201 slices), 12 data
sets (118 slices) and 6 data sets (56 slices). Table 2 presents
the DSC using the three sets of the shape templates.

Effect of Iteration Number

To study the effects of the number of iterations, we recorded
the average DSC with respect to different iteration steps,
as shown in Fig. 6. The DSC begins to converge when the
number of iteration steps reaches 13.

Our program was built on MATLAB and run on a per-
sonal computer that is equipped with a Pentium Dual-Core
CPU E5200 2.50 GHz and a Kingston 2 GBDDR2 800MHz
RAM. The average runtime was calculated for DE data from
one patient, of which the average number of slices is 15. The
runtime for atlas-based initialization was 6.03±1.60 min,
and that for each iterationwas 20.61±4.62 s. If the number of
iteration is set at 20, the total time for fully automatically seg-
mentation process is about 13 min. Set a higher value of the
threshold for selecting shape templates can reduce the run-
time. In our study,when the threshold is set as 0.6, the runtime
of each iteration is decreased to 7.55±1.83 s, and the total
time can be reduced to about 9 min. Note that the atlas-based
initialization can be easily replaced with other techniques,

for example the convolution neural network based method
[33]. In this kind of methods, when enough training data are
provided, the initialization for an unseen data can be done
within seconds.

Discussion

As shown in Fig. 3 and the first row in Fig. 4, though no
intensity model has been adopted to explicitly model het-
erogeneous intensity, the random walks method successfully
labels both healthy tissue and infarct region as myocardium,
regardless of the position and size of the infarction. For indis-
tinct boundaries, once the shape model guides the search to
a place near the real boundaries, the random walks method
can stop at weak boundaries.

Because of the existence of infarcts and the low intensity
contrast, theAtlasmethod tends tomakemistakes, especially
in the infarcted areas, as demonstrated in the second row of
Fig. 4. In the AtlasGuidedmethod, where no shape regular-
ization is adopted, these mistakes cannot be corrected, so the
infarcts are not marked as likely being myocardium. Thus,
the infarcts cannot be classified properly in theAtlasGuided
method.However, in clinical applications, the objective is the
quantitative evaluation of the MI. Therefore, the infarcted
region should be the focus of attention. The first row in
Fig. 4 shows that, in the proposed method, with the adoption
of the sparse representation-based shape method, the delin-
eation of the myocardium is greatly improved, especially in
the infarction area, which is indicated with the red arrows.
The increase in the mean DSC of the myocardium is rela-
tively small (DSC: proposed: 74.60±7.79%; AtlasGuided:
71.91±7.51%), which is likely because the improved region
is diluted by the entire volume of themyocardium. Therefore,
we believe that our results will have more reference value in
clinical assessments.

In the proposed method, the manual segmentation of cine
images from a public data set is used to generate the shape
templates. In the ManGuided method, the cine MRI was
acquired during the same session, and manual segmentation
was performed by the same expert as the DE gold standard.
However, as Table 1 demonstrates, theManGuided method
achieves a similar myocardium DSC (74.51±8.44%) to the
proposed method (74.60±7.79%), which reveals that the
sparse representation in our proposed framework is efficient
for prior shape modeling. The shape model provides compa-
rable shape regulation with the manual segmentation of cine
MRI of the same patient.

The results in Table 2 demonstrate that a relatively
small set of shape templates can effectively represent the
myocardium shapes. The results in Table 2 together with
that of the ManGuided method demonstrate that the shape
template repository can be built with a small data set from
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Table 3 The results reported in
the literature

Reference No. of patients DSC (%)

Endo Epi Myo

Engan et al. [13] 54 N/A 86±0.27 N/A

Wei et al. [19] 21 95.33±3.63,
92.64±4.36

96.88±1.84,
94.35±2.70

88.57±4.75,
82.32±5.59

Tao et al. [10] 50 N/A N/A 81±7
83±9

Kurzendorfer et al.
[20]

26 85±6 84±6 N/A

Liu et al. [21] 22 86.74±5.82 90.40±3.17 73.77±5.56

Proposed 30 85.07±5.79 90.27±3.59 74.60±7.79

Note that Wei et al. [19] and Tao et al. [10] evaluated the results with two sets of manual segmentations. Endo,
Epi and Myo represent endocardium, epicardium and myocardium, respectively

different data centers, which greatly extends the application
scenarios of the proposed method. In previous work [31],
the guided random walks were also used for myocardium
segmentation in cine MRI. However, this work adopts a
retrieval framework, which is based on the assumption
that the training data should have similar cases as the
target subject, which requires a relatively large data reposi-
tory.

The DSC of the proposed method (74.60±7.79%) is
comparable to the inter-observer study (73.94±5.12%),
which indicates that the proposed method has the potential
to achieve clinically relevant results. However, it is worth
notice that the SS of the proposed method (79.92±5.88%)
is below that of the inter-observer study (83.42±4.67%).
These results reveal that the manual segmentation from dif-
ferent experts is more likely to have similar general shape.
The SS of theManGuidedmethod (79.86±5.94%) does not
show any improvement compared to the proposed method.
This is probably because that the targetDE imagesmaynot be
acquired at the exact end-diastolic phase as the phase chosen
from corresponding cine MRI.

The proposedmethod achievesDSCof 76.02±7.43%and
SS of 82.15±4.93% on the 10 new unseen images, which
is comparable to the results of the original 30 data. Though
the number of unseen data is relative small, the results can
add some strength to the algorithm’s generalization to rou-
tine clinical images, and the robustness against the chosen
parameters.

There are totally five parameters in the proposed method.
Among these parameters, the threshold T , which is used
to generate the binary segmentation from probability map,
critically affects the results, especially for target with small
number of pixels. In the application for myocardium seg-
mentation, the recommended value range is 0.36–0.44. The
rest of four parameters do not have significant effect to
the results in relative large value ranges, and the recom-
mended value ranges are: the weighting parameter of shape

guided term 0.01 < γ < 0.64, the threshold to select
shape templates in the target-specific dictionary 0.3–0.6,
the parameter in the Gaussian weighting function β >

100, the sparsity level parameter 0.1 < λ < 1. Further
details about each parameter are provided in “Appendix
B.”

Comparison with related works

We list the segmentation results of DE MRI reported in the
literature in recent years for reference, as summarized in
Table 3. However, with the difference in data sets, it is dif-
ficult to perform comparison across different studies. In the
work of Wei et al. [19] and Tao et al. [10], the correspond-
ing cine MRI is semi-automatically segmented and used as
the prior information. In the work of Wei et al., the manual
registration is also introduced when the automatic transla-
tional registration failed. By contrast, our approach is fully
automatic. In these works, the inter-observer study is also
performed. The myocardium DSC between two manual seg-
mentations is 82.93±5.28% [19] and 81±6% [10], which is
much higher than that in our work. This may suggest that the
degree of difficulty formyocardium segmentation is different
with different data sets.

For the work of Kurzendorfer et al. [20], no prior
shape information is used, and weak shape information of
myocardium thickness constraint is used in the work of Liu
et al. [21]. In the work of Engan et al. [13], only epicardium is
segmented. In these works, a realistic shape is not guaranteed
in the results.

Possible applications and future work

In practice, myocardium can first be segmented in a DE
image with the proposed method. Once the myocardium
area has been determined, the segmentation and quantifica-
tion of infarct regions can be achieved, as many researchers
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have reported [3–9]. With the segmentation of both the
myocardium and infarct region in DE images, some coef-
ficients can be calculated.

In thiswork, a simple empiricalmethod is used to build the
target-specific shape dictionary. More mathematically sound
methods can be used to a build a complete dictionary. More-
over, we found it particularly challenging to further improve
the accuracy of myocardium delineation with only informa-
tion from DEMRI because of the low contrast of DE images
and the complex infarct patterns. In clinical practice, DE and
T2 MRI are usually analyzed simultaneously to evaluate the
MI and edematous regions. In future works, we will attempt
to combine the complementary information from the T2 and
DEMRIwithin a unified framework and then simultaneously
perform myocardium segmentation on the two sequences.
Also, we will try to introduce the constraints along the slices
in the future work.

Conclusion

We propose a novel framework for the segmentation of
myocardium from DE MRI using prior shape knowledge
and image intensity information. Sparse representation is
used to model the prior shape with a set of shape tem-
plates from different subjects instead of the segmentation
of cine MRI in the same session. The method of guided ran-
dom walks is used to integrate the prior shape and intensity
information in DE images. The proposed method adopts an
iterative scheme to regularize and optimize the segmenta-
tion results. The results show that the proposed method has
the potential to achieve clinically relevant results, with an
average DSC that is comparable to the inter-observer differ-
ence.
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Appendix A: Some explanation about
the derivation of solution equation

The energy function in Eq. (5) can be written as:

E(x) � xT Lx +
γ

2

(
xT x − 2xT yshape + yshapeT yshape

)

� xT
(
L +

γ

2
I
)
x − γ xT yshape +

γ

2
yshapeT yshape,

where x is the vector of the probability of all the voxels;
yshape is the prior shape for all the slices; L is the Laplacian
matrix, as defined in Eqs. (6) and (7).

Since L is positive semi-definite and the value of parame-
ter γ is positive, the matrix

(
L + γ

2 I
)
is positive definite. So

the only critical points of E(x)will be the minima. Differen-
tiating E(x) with respect to x, and the minimizer of E(x) is
given by the linear equations in Eq. (8). By solving this sys-
tem of linear equations, the probability map of myocardium
can be obtained.

Appendix B: The effects of parameters
and the recommended value ranges

There are totally five parameters in the proposed method,
as summarized in Table 4. Among these parameters, the
threshold T , which is used to generate the binary segmenta-
tion from probability map, critically affects the results. We
have recorded the DSC of myocardium with the threshold T
increasing from 0.3 to 0.5, and the results are demonstrated
in Fig. 7. The highest average DSC is achieved when the
threshold is between 0.4 and 0.42, which contradicts to the
convention of setting the threshold at 0.5 for probability bina-
rization. This result is probably due to the elongated shape
and relative small area of myocardium, as well as the relative
low intensity contrast between myocardium and surround-
ing tissues. Since there is a neighborhood-related term in the
energy function of randomwalksmethod, the probabilities of
myocardium are easily affected by the pixels of background,
including the blood pool encountered by the endocardium
and the tissues around the epicardium. Therefore, a threshold
below 0.5 is helpful to prevent the myocardium from being
“swallowed” by the background. Evaluated with our testing
data sets, when the threshold decreases from 0.4, the DSC
decreases slowly because of the tendency to wrongly classify
the surrounding pixels into myocardium.When the threshold
increases to 0.48, in some data sets, the myocardium begins
to be incorporated into the background, which results in a
low average DSC and high DSC variance. When the method
is applied for myocardium segmentation and the data reso-
lution is similar to our data sets, this value does not need to
be changed. When the segmentation target is of larger pixel
number, such as in the case of data with higher resolution or
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Table 4 The parameters in the proposed method

Parameter Representation Recommended value
range

T Threshold used to generate
the binary segmentation
from probability map

0.36–0.44

γ Weighting parameter of
shape guided term

0.01–0.64

T D Threshold to select shape
templates in the
target-specific dictionary

0.3–0.6

β Parameter in the Gaussian
weighting function

>100

λ Sparsity level parameter 0.1–1
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Fig. 7 Effect of threshold T

target tissue of larger area, the value of threshold T will have
less effect to the results.

The rest of four parameters do not have significant effect
to the results in relative large value ranges. We have recorded
the DSC of myocardium with weighting parameter γ dou-
bling from 0.005 to 0.64, as illustrated in Fig. 8. The highest
average DSC is achieved when γ is set at 0.01, but the paired
t test shows that no significant difference (p <0.05) exists
between the γ value of 0.01 and the rest. This demonstrates
that the change of parameter γ in a relatively large range
(from 0.005 to 0.64) does not have a great effect on the final
segmentation results.When the value of parameter γ is small,
such as 0.005, insufficient shape information is imposed and
the performance of the method becomes less stable, where
the DSC standard deviation is larger. When parameter γ is
set at a large value, such as 0.64, the imposed constraint may
limit the flexibility of the algorithm, which results in a poorer
fitting of the results to the image intensity.

The sparse representation-based model is able to select
the proper shape templates from the dictionary to model
the myocardium shape. However, as the size of the dictio-
nary increase, the computation time will also increase. So
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Fig. 8 Effect of weighting parameter γ

we proposed to build the target-specific dictionary, where a
threshold of DSC is used to remove some irrelevant shape
templates and reduce the size of the dictionary. The shape
repository used in this study is relative small, so we choose a
low threshold of 30%. In this study, with the shape tem-
plate repository built with 201 slices from the Challenge
data set, a threshold below 50% does not have effect to the
accuracy of results. And with a threshold of 60%, a DSC
of 73.15±8.50% is achieved. When the threshold is further
increased, for some slices, no shape templates will be kept
or the reserved number is too small to give enough flexibility
modeling the actual myocardium shape. In the clinical prac-
tice, in order to reduce the computation time, the value can
be set higher (such as 50–60%). Also, if the shape repository
is large and has a good variety of shape characters, a higher
value should be set.

The parameter λ in the sparse representation-based shape
model controls the level of sparsity. When the parameter λ

is larger, the nonzero elements in the vector w will be less.
This means that less templates in Dr will be effective in
representing the myocardium. In this study, the value of λ

changing between 0.1–1 does not have significantly effect to
the results.

Another free parameter is β in the Gaussian weighting
function.When the value of β increases, the sensitivity of the
random walks method to the intensity contrast increases. In
our empirical observations,when the value ofβ is sufficiently
large, changing β in a large range does not affect the results.
In our experiment, the square gradients are normalized to
the interval of [0, 1], and good results can be achieved when
β > 100. In a relevant work [31], a careful study of the effect
of β was undertaken, and a similar trend was found.
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